$C P$ violation studies in $B^{0} \rightarrow D^{(*)+} \bar{D}^{(*)-}$ and $B^{0} \rightarrow J / \psi K^{*}$

Lorenzo Vitale
Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

Received: 23 October 2003 / Accepted: 6 January 2004 /
Published Online: 11 February 2004 - © Springer-Verlag / Società Italiana di Fisica 2004
Abstract. Recent experimental results on $B^{0} \rightarrow D^{(*)+} \bar{D}^{(*)-}$ and $B \rightarrow J / \psi K^{*}$ decays at the B factories
by the BABAR and BELLE collaborations are reviewed.

1 Introduction

In the Standard Model (SM) $C P$ violation is made possible by an irreducible complex phase in the CKM quarkmixing matrix [1]. In this framework, measurements of $C P$ asymmetries in the proper-time distribution of neutral B decays to $C P$ final states can be related to the parameter $\sin 2 \beta, \beta$ being one of the angles of the unitarity triangle of the CKM matrix. The theoretically cleanest environment to measure $\sin 2 \beta$ are the $b \rightarrow c \bar{c} s$ (charmonium) decays, such as $B^{0} \rightarrow J / \psi K_{S}^{0}$. A precise measurement of $\sin 2 \beta$ in the charmonium modes has been reported in the last years by the BABAR and BELLE collaborations [2].

In addition to the charmonium modes, $C P$ violation measurement can be performed in many other $C P$ decays. Cabibbo suppressed modes $b \rightarrow c \bar{c} d$ and vector-vector decays are excellent candidates to broaden $C P$ violation studies.

The $C P$ violating asymmetry in the Cabibbo suppressed modes $b \rightarrow c \bar{c} d$ such as $B^{0} \rightarrow D^{*+} D^{*-}$ and $B^{0} \rightarrow D^{* \pm} D^{\mp}$ is related to $\sin 2 \beta$ when corrections due to theoretically uncertain penguin diagram contributions are neglected [3,4]. Penguin-induced corrections are predicted to be small in models based on the factorization approximation and heavy-quark symmetry; an effect of about 2% is predicted by [5]. A comparison of measurements of $\sin 2 \beta$ from $b \rightarrow c \bar{c} s$ modes with that obtained in $B^{0} \rightarrow D^{(*)+} \bar{D}^{(*)-}$ is an important test of these models and the SM.

In vector-vector decays such as $B^{0} \rightarrow D^{*+} D^{*-}$ and $B^{0} \rightarrow J / \psi K^{* 0}\left(\rightarrow K_{S}^{0} \pi^{0}\right)$ different partial waves contribute with different $C P$ parities to the $C P$ asymmetry, leading to a dilution in the observed asymmetry. An angular analysis allows to separate out the two different $C P$ contributions to the asymmetry [6]. For $B^{0} \rightarrow J / \psi K^{* 0}(\rightarrow$ $\left.K_{S}^{0} \pi^{0}\right)$ a $\cos 2 \beta$ factor appears in the interference between the $C P$-odd and $C P$-even amplitudes. Moreover time integrated angular analyses allow to extract the decay amplitudes, providing a test for the models based on factorization hypothesis and heavy-quark symmetry.

Fig. 1. Energy-substituted mass for the $B A B A R$ selected $B^{0} \rightarrow$ $D^{*+} D^{*-}$ candidates in the region $-39<\Delta E<31 \mathrm{MeV}$. The solid line is a fit result using a Gaussian and an Argus function

$$
2 B^{0} \rightarrow D^{*+} D^{*-}
$$

B^{0} mesons decaying in $D^{*+} D^{*-}$ are exclusively reconstructed by combining two charged D^{*} candidates reconstructed in the modes $D^{*+} \rightarrow D^{0} \pi^{+}$and $D^{*+} \rightarrow D^{+} \pi^{0}$. The primary variables used to distinguish signal from background are the difference of the B candidate energy and the beam energy, $\Delta E \equiv E_{B}-E_{\text {Beam }}$, and the energysubstituted mass, $m_{\mathrm{ES}} \equiv \sqrt{E_{\text {Beam }}^{2}-p_{B}^{2}}$, where all variables are evaluated in the $\Upsilon(4 S)$ center-of-mass frame.

Both BABAR [7] and BELLE [8] have measured the branching fraction $\operatorname{Br}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)$:

$$
\begin{aligned}
B r(B A B A R) & =(8.3 \pm 1.6(\text { stat }) \pm 1.2(\text { syst })) \times 10^{-4} \\
B r(B E L L E) & =(7.6 \pm 0.9(\text { stat }) \pm 1.4(\text { syst })) \times 10^{-4}
\end{aligned}
$$

with data corresponding to an integrated luminosity of $21 \mathrm{fb}^{-1}$ and $78 \mathrm{fb}^{-1}$ respectively and systematic uncertainties dominated by tracking efficiencies and acceptance effects.

Fig. 2. Measured distribution of $\cos \theta_{\operatorname{tr}}$ by $B A B A R$ in $B^{0} \rightarrow$ $D^{*+} D^{*-}$ events. The data points are from the region $m_{\mathrm{ES}}>$ $5.27 \mathrm{GeV} / c^{2}$ and the solid line is the fit result; the dotted line represents the background component

2.1 $C P$ odd fraction in $B^{0} \rightarrow D^{*+} D^{*-}$

The $B^{0} \rightarrow D^{*+} D^{*-}$ mode is a pseudo-scalar decay to a vector-vector final state, with contributions from three partial waves with different $C P$ parities: even for the S and D-waves, odd for the P-wave. The $C P$-odd contribution is predicted to be about 6% in 910 .

BABAR has performed a one-dimensional time integrated angular analysis to determine the fraction, R_{\perp}, of the P-wave, $C P$-odd component of the $B^{0} \rightarrow D^{*+} D^{*-}$ decay, with data corresponding to an integrated luminosity of $81 \mathrm{fb}^{-1}$ and a signal yield of 156 ± 14 (stat) events [11].

Only the polar angle $\theta_{\text {tr }}$ between the normal to the D^{*-} decay plane and the direction of flight of the slow pion from the D^{*+} in the D^{*+} rest frame is used. The expected one-dimensional differential decay rate is:

$$
\begin{equation*}
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{\mathrm{tr}}}=\frac{3}{4}\left(1-R_{\perp}\right) \sin ^{2} \theta_{\mathrm{tr}}+\frac{3}{2} R_{\perp} \cos ^{2} \theta_{\mathrm{tr}} \tag{1}
\end{equation*}
$$

The dependence of the detector efficiency on the decay angles can introduce a bias in the measured value of R_{\perp}. Including the efficiency explicitly in the decay rate, leads to a modified expression for the (11), in terms of the three efficiency moments which can be determined by using simulated events [11].

The measurement of R_{\perp} is based on a combined unbinned maximum likelihood fit of the $\cos \theta_{\text {tr }}$ and $m_{\text {ES }}$ distributions. The experimental resolution of $\theta_{\text {tr }}$ is not negligible and is accounted for by convolving the signal pdf with a double Gaussian. The fit to the dataset (Fig. 2) yields a value of

$$
R_{\perp}=0.063 \pm 0.055(\text { stat }) \pm 0.009(\text { syst }) .
$$

The largest systematic uncertainties arise from the parameterization of the angular resolution (0.005) and the determination of the efficiency moments (0.005).

2.2 Time dependent angular analysis in $B^{0} \rightarrow D^{*+} D^{*-}$

In addition to the time-integrated measurement of the $C P$ odd fraction, BABAR has performed a combined analysis
of the $\cos \theta_{\mathrm{tr}}$ distribution, the time dependence and the information from the other B meson in the event to tag its flavor as either a B^{0} or \bar{B}^{0}, in order to determine the time-dependent $C P$ asymmetry [11].

Although factorization models predict a small penguin contamination in the weak phase difference in $\operatorname{Im}\left(\lambda_{f}\right)=$ $-\sin 2 \beta$ [5], a sizable penguin contribution cannot a priori be excluded. Thus, the value of $\lambda_{f}=\eta_{C P} \frac{q}{p} \frac{\bar{A}(f)}{A(f)}[12]$ can be different for the three transversity amplitudes $(f=\perp, 0, \|)$ because of possible different penguin-to-tree ratios. This possibility is explicitly included in the parameterization of the decay rates $F_{+}\left(F_{-}\right)$for a neutral B meson tagged as a $B^{0}\left(\bar{B}^{0}\right)$:

$$
\begin{aligned}
F_{ \pm}\left(\Delta t, \cos \theta_{\mathrm{tr}}\right)= & \frac{\mathrm{e}^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}} G \mp \\
& {\left.\left[S \sin \left(\Delta m_{d} \Delta t\right)+C \cos \left(\Delta m_{d} \Delta t\right)\right]\right\} }
\end{aligned}
$$

where $\Delta t=t_{\mathrm{rec}}-t_{\mathrm{tag}}$ is the difference between the proper decay time of the reconstructed B meson (B_{rec}) and of the tagging B meson $\left(B_{\mathrm{tag}}\right), \tau_{B^{0}}$ is the B^{0} lifetime, and Δm_{d} is the mass difference determined from the $B^{0}-\bar{B}^{0}$ oscillation frequency. The G, C and S coefficients are defined as
$G=\frac{3}{4}\left[\left(1-R_{\perp}\right) \sin ^{2} \theta_{\mathrm{tr}}+2 R_{\perp} \cos ^{2} \theta_{\mathrm{tr}}\right]$,
$C=\frac{3}{4}\left[\left(1-R_{\perp}\right) \frac{1-\left|\lambda_{+}\right|^{2}}{1+\left|\lambda_{+}\right|^{2}} \sin ^{2} \theta_{\mathrm{tr}}+2 R_{\perp} \frac{1-\left|\lambda_{\perp}\right|^{2}}{1+\left|\lambda_{\perp}\right|^{2}} \cos ^{2} \theta_{\mathrm{tr}}\right]$,
$S=-\frac{3}{4}\left[\left(1-R_{\perp}\right) \frac{2 \operatorname{Im}\left(\lambda_{+}\right)}{1+\left|\lambda_{+}\right|^{2}} \sin ^{2} \theta_{\mathrm{tr}}-2 R_{\perp} \frac{2 \operatorname{Im}\left(\lambda_{\perp}\right)}{1+\left|\lambda_{\perp}\right|^{2}} \cos ^{2} \theta_{\mathrm{tr}}\right]$.
Because the two $C P$-even transversity amplitudes produce the same distribution in $\cos \theta_{\text {tr }}$, the only sensitivity is on λ_{+}, the appropriate average of $\lambda_{\|}$and λ_{0} [11].

The parameters $\operatorname{Im}\left(\lambda_{+}\right)$and $\left|\lambda_{+}\right|$are determined with a simultaneous unbinned maximum likelihood fit to the Δt distributions of the $B_{\text {rec }}$ and $B_{\text {flav }}$ tagged samples (Fig. 3). Since the $C P$-odd fraction is small, there is little sensitivity to the parameters $\left|\lambda_{\perp}\right|$ and $\operatorname{Im}\left(\lambda_{\perp}\right)$. Therefore they are fixed to 1.0 and -0.741 [2] respectively. These are the values expected if direct $C P$ violation and contributions from penguin diagrams are neglected. The results obtained from the fit (Fig. [3) are

$$
\begin{aligned}
\operatorname{Im}\left(\lambda_{+}\right) & =0.05 \pm 0.29(\text { stat }) \pm 0.10(\text { syst }) \\
\left|\lambda_{+}\right| & =0.75 \pm 0.19(\text { stat }) \pm 0.02(\text { syst })
\end{aligned}
$$

The dominant sources of systematic uncertainty come from the variation of the value of $\lambda_{\perp}(0.056$ and 0.008 , respectively, for $\operatorname{Im}\left(\lambda_{+}\right)$and $\left|\lambda_{+}\right|$, and the level, composition, and $C P$ asymmetry of the background (0.078 and 0.005). If the $B \rightarrow D^{*+} D^{*-}$ transition proceeds only through the $b \rightarrow c \bar{c} d$ tree amplitude, one expects that $\operatorname{Im}\left(\lambda_{+}\right)=-\sin 2 \beta$ and $\left|\lambda_{+}\right|=1$. To test this hypothesis, $\operatorname{Im}\left(\lambda_{+}\right)$and $\left|\lambda_{+}\right|=1$ are fixed to -0.741 and 1 respectively [2] and the fit is repeated. The observed change in the likelihood corresponds to 2.5 standard deviations (statistical uncertainty only).

Fig. 3. From top to bottom: Number $N_{B^{0}}\left(N_{\bar{B}^{0}}\right)$ of candidate events in the region $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$ with a $B^{0}\left(\bar{B}^{0}\right)$ tag, and the raw asymmetry $\left(N_{B^{0}}-N_{\bar{B}^{0}}\right) /\left(N_{B^{0}}+N_{\bar{B}^{0}}\right)$, as functions of Δt in BABAR $B^{0} \rightarrow D^{*+} D^{*-}$ events. The solid curves represent the result of the combined fit to the full sample. The shaded regions represent the background contributions
$3 B^{0} \rightarrow D^{* \pm} D^{\mp}$
Both BELLE 13] and BABAR [14 have measured the branching fraction $\operatorname{Br}\left(B^{0} \rightarrow D^{* \pm} D^{\mp}\right)$:

$$
\begin{aligned}
B r(B E L L E) & =(11.7 \pm 2.6(\text { stat }) \pm 2.3(\text { syst })) \times 10^{-4} \\
\operatorname{Br}(B A B A R) & =(8.8 \pm 1.0(\text { stat }) \pm 1.3(\text { syst })) \times 10^{-4}
\end{aligned}
$$

with data corresponding to an integrated luminosity of $29 \mathrm{fb}^{-1}$ and $81 \mathrm{fb}^{-1}$ respectively.

On the same data corresponding to a signal yield of 113 ± 13 (stat) events $B A B A R$ has also performed $C P$ violation studies [14].

First of all BABAR has determined the time-integrated $C P$ violating asymmetry between the rates to $D^{*-} D^{+}$and $D^{*+} D^{-}$to be $\mathcal{A}=-0.03 \pm 0.11$ (stat) ± 0.05 (syst).

The decay rate distributions $f^{ \pm}$, where the superscript $+(-)$ refers to whether the flavor tag was $B^{0}\left(\bar{B}^{0}\right)$, are given by

$$
\begin{aligned}
f^{ \pm}(\Delta t)= & \frac{e^{-|\Delta t| / \tau}}{4 \tau} \times \\
& {\left[1 \pm S \sin \left(\Delta m_{d} \Delta t\right) \mp C \cos \left(\Delta m_{d} \Delta t\right)\right] }
\end{aligned}
$$

The states $D^{*-} D^{+}$and $D^{*+} D^{-}$are not $C P$ eigenstates. The formalism of time evolution for non- $C P$ eigenstate vector-pseudo-scalar decays is given in [15]. Separate S
and C parameters are fitted for the two decays $D^{*-} D^{+}$ and $D^{*+} D^{-}$, resulting in the four fitted $C P$ violation parameters $\left\{S_{-+}, C_{-+}, S_{+-}, C_{+-}\right\}$. The time-dependent fit to the $B \rightarrow D^{* \pm} D^{\mp}$ and $B_{\text {flav }}$ samples yields

$$
\begin{aligned}
S_{-+} & =-0.24 \pm 0.69(\text { stat }) \pm 0.12(\text { syst }) \\
C_{-+} & =-0.22 \pm 0.37(\text { stat }) \pm 0.10(\text { syst }) \\
S_{+-} & =-0.82 \pm 0.75(\text { stat }) \pm 0.14(\text { syst }) \\
C_{+-} & =-0.47 \pm 0.40(\text { stat }) \pm 0.12(\text { syst })
\end{aligned}
$$

In the case of equal amplitudes for $B \rightarrow D^{*-} D^{+}$and $B \rightarrow$ $D^{*+} D^{-}$, one expects that at tree level $C_{-+}=C_{+-}=0$ and $S_{-+}=S_{+-}=-\sin 2 \beta$.

$4 B \rightarrow J / \psi K^{*}$

For $B \rightarrow J / \psi K^{*}$ new results were not available for this conference, but time integrated and time dependent full angular analyses were already published by both BABAR [16] and BELLE [17].

References

1. N. Cabibbo: Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa: Prog. Th. Phys. 49, 652 (1973)
2. BABAR Collaboration, B. Aubert et al.: Phys. Rev. Lett. 89, 201802 (2002); BELLE Collaboration, K. Abe et al.: Phys. Rev. D 66, 071102 (2002)
3. M. Gronau: Phys. Rev. Lett. 63, 1451 (1989)
4. A.I. Sanda and Z.Z. Xing: Phys. Rev. D 56, 341 (1997)
5. X.Y. Pham and Z.Z. Xing: Phys. Lett. B 458, 375 (1999)
6. I. Dunietz, et al.: Phys. Rev. D 43, 2193 (1991)
7. $B A B A R$ Collaboration, B. Aubert et al.: Phys. Rev. Lett. 89, 061801 (2002)
8. R. Ioth: arXiv:hep-ex/0210025, presented at ICHEP02 conference, Amsterdam, Netherland, 24-31 July 2002
9. J. Rosner: Phys. Rev. D 42, 3732 (1990)
10. Z.Z. Xing: Phys. Rev. D 61, 014010 (2000)
11. BABAR Collaboration, B. Aubert et al.: Phys. Rev. Lett. 91, 131801 (2003)
12. P.F. Harrison and H.R. Quinn: "The BABAR Physics Book", SLAC-R504 (1998), Chapter 5, and Refs. therein
13. BELLE Collaboration, K. Abe et al.: Phys. Rev. Lett. 89, 122021 (2002)
14. BABAR Collaboration, B. Aubert et al.: Phys. Rev. Lett. 90, 221801 (2003)
15. R. Aleksan et al.: Nucl. Phys. B 361, 141 (1991); R. Aleksan et al.: Phys. Lett. B 317, 173 (1993)
16. B. Aubert et al.: BABAR Collaboration,: Phys. Rev. Lett. 87, 241801 (2001) and for $\cos 2 \beta$: arXiv:hep-ex/0203007, presented at 16th Les Rencontres de Physique de la Vallee d'Aoste: Results and Perspectives in Particle Physics, La Thuile, Aosta Valley, Italy, 3-9 Mar 2002
17. K. Abe et al. BELLE Collaboration: Phys. Lett. B 538, 11 (2002) and for $\cos 2 \beta$: BELLE-CONF-0212, presented at ICHEP02 conference, Amsterdam, Netherland, 24-31 July 2002
